dRAID: Parity Declustered
RAID for ZFS



The Problem

RAIDz has many great features, but resilver is slow:

= No write hole, self healing, no special hardware

3x 12-drive RAIDz2 2Y 120T 23.6T 4.24T 27h2m 45.68 MB/s
1x 4-drive RAIDz1 4Y 6.42T 1.23T 2.29T 45h45m 14.58 MB/s
3x 6-drive RAIDz1 8.47T 560G 6h32m 24.00 MB/s

5x 6-drive RAIDz1 109T 3.24T 44h52m 21.03 MB/s

RAIDz Resilver Time




The Causes

Why is RAIDz resilver slow?

= Random IO due to block pointer tree traversal

— Some mitigation with “sequential resilver” work

= Write throughput of a single replacement drive is a bottleneck

= Asingle VDEV doesn’t scale to a large number of child VDEVs

— Aggregated read throughput for reconstruction is limited




The “Solutions”

Best “solutions™ available today

= Reduce the number of block pointers by using large (1MB+) blocks

= |Increase available total IOPS
— Use narrow RAIDz (for example: 4-wide RAIDz1 or mirroring)
— Use lots of small disks or SSDs

= None of these solutions address:

— Single replacement drive bottleneck

— Limited aggregate read throughput from child VDEVs




dRAID: No BP Tree Traversal

dRAID1

Disk
LBA A B C D E

RAIDz1

Disk
LBA A B C D E

O | X | X | X
Ao o |X X
Ao alX | a
Ao oo
o I W e W s N o
o6 < o~ o
A Qo | X
N NalNallNa)
Ao oo
Ao Qla
N e}




dRAID: Sequential Rebuild

= No block pointer tree traversal
— Completely sequential like traditional RAID-4/5/6
— Skips free space by scanning spacemap objects

— Large IO: not limited by block boundary

= No write hole, like RAIDz-1/2/3
— RAIDz: variable stripe width

— dRAID: fixed stripe width, but always allocate full stripes




dRAID1-0

dRAID: Parity Declustering

RA%-O RA%-l Hot Spare Gr%O Grgle 1 Logical Spare
r N \/\ r N\ \/\
o 1 2 3 4 5 6 7 8 9 10 1 4 5 9 3 2 8 10 7 6 0
o 1 2 3 4 5 6 7 8 9 10 2 5 6 10 4 3 9 o 8 7 1
o 1 2 3 4 5 6 7 8 9 10 3 6 7 o 5 4 10 1 9 8
o 1 2 3 4 5 6 7 8 9 10 4 7 8 1 6 5 o 2 10 9 2
o 1 2 3 4 5 6 7 8 9 10 5 8 9 2 7 6 1 3 0 10 4

Declustering

o 1 2 3 4 5 6 7 8 9 1_0—6 9 10 3 8 7 2 4 1 o

0 1 2 3 4 5 6 7 8 9 |10 7 10 ©O 4 9 8 3 5 2 1 6
o 1 2 3 4 5 6 7 8 9 |10 8 0 1 5 10 9 4 6 3 2 7
o 1 2 3 4 5 6 7 8 9 |10 9 1 2 6 9 10 5 7 4 3 8
o 1 2 3 4 5 6 7 8 9 10 10 2 3 7 1 e 6 8 5 4 9




dRAID: Parity Declustering

Rebuild scales to a large number of drives

= Decouple redundancy group (P+D) from the number of child drives
= Write: spare blocks are rotated among all drives

» Read: shared evenly among all drives

rive
[@] 1 2 3 4 5 6 7 8 9 10

Read 4 4 4 4 4 4 4 4 4 4
Write 1 1 1 1 1 1 1 1 1 1

Rebuild 10 Distribution




dRAID: Demo

Live demo of dRAID rebuild:

= 43-drive dRAID2: 4 x (8D + 2P) groups, 3 distributed spares
— 601G used out of 46T
— Each drive capable of 150 MB/s

= Rebuild 1 failed drive to a distributed spare
— Read 157.2G, write 17.5G




dRAID: Demo Results

Rebuild completed in 37 seconds:

= Aggregate throughput: read 4350.6 MB/s, write 484.3 MB/s
— 3x faster than RAIDz resilver

— Scales to more drives

= Combined read/write of a single drive at 115.12 MB/s

intel‘ . 10




dRAID Downsides: Space Inflation

dRAID1

Disk
LBA A B C D E

RAIDz1

Disk
LBA A B C D E

O a | X | X | X
Ao a|XxX X
Ao al|X |a
AN |lao oo
o I W e W Y N o
o6 < o~ o
A Qo | X
N NalNallNa)
Ao oo
Ao Qla
N e}

intel‘ . 11




dRAID Space Inflation: Mirrored Metaslab

Disk
LBA A B C D E
0

Disk
LBA A B C D E
0

5 S 38
g2 S 2
A A
[ N\ [
O o | X | X
Ol o X
alolala
Olaolaola a)
oo o | a)
—
— N (90] ._nm
Ol | X | X | X
aOlo|lao | X | X
ool a | X | a
alilallalilalNa)
2o | o | a




dRAID: Downsides

= Allocated block size inflation
— Doesn’t work well for small blocks

— Mitigated by mirrored metaslabs

» Rebuild cannot verify block checksum:

— Still need to verify checksums by traversing BP tree

= Parity group and spare capacity chosen at VDEV creation

intel‘ . 13




dRAID: Project Status

Feature complete:

= Code: https://github.com/zfsonlinux/zfs/pull/5841

= Document; https://qgithub.com/zfsonlinux/zfs/wiki/dRAID-HOWTO

= Need community help: reviewing, testing, patching, porting.

intel‘ . 14



https://github.com/zfsonlinux/zfs/pull/5841
https://github.com/zfsonlinux/zfs/wiki/dRAID-HOWTO




dRAID: Demo

NAME STATE READ WRITE CKSUM
tank ONLINE 0O 0 O
draid2-0  ONLINE 0O 0 O
sdb ONLINE 0O 0 O
sdd ONLINE 0O 0 O
sde ONLINE 0O 0 O
sdar ONLINE 0O 0 O
spares
$draid2-0-sO0 AVAIL
$draid2-0-s1 AVAIL

$draid2-0-s2 AVAIL

intel‘ . 16




dRAID: Demo

# zpool offline tank sde
# zpool replace tank sde '$draid2-0-s1
# zpool status
scan: rebuilt 17.4G in 0hOm36s with O errors
tank DEGRADED O 0 O
draid2-0 DEGRADED O 0 O
sdb ONLINE 0O 0 O
sdd ONLINE 0O 0 O
spare-2 DEGRADED O O O
sde OFFLINE O 0 O

$draid2-0-s1 ONLINE 0O 0 O

intel‘ . 17




dRAID: Demo

— sy

— sdi

— sl

— sdg

— sdi

—sdl

(intel‘ . 18



