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Types of Compression Algos

● Archiving algorithms:
– Good at compression ratio, but highly CPU  

intensive (read: slow)
– gzip, bzip2, LZMA

● Real-time algorithms:
– Trade compression ratio for speed
– lzjb, lz4, lzf



  

Why we bother with real-time algos



  

Sort-of middle ground solutions



  

So why archivers?

● Sometimes space savings are worth it:
– Write once, read many workloads (initial CPU cost 

diluted over many reuses of the savings achieved)
– High bandwidth costs
– Certain workloads compress really well (up to or over 

90%):
● text files
● HTML documents

– Certain workloads, however, don't compress at all:
● Pre-compressed stuff (multimedia, file archives, etc.)



  

What drives compression settings

● Am I prepared to pay the CPU cost?
● Is my workload compressible?

– This shouldn't really be a question, but it is
● We're a filesystem and individual files typically 

are either compressible or incompressible:
– Compressible: .txt, .html, .doc, .wav
– Incompressible: .mpg, .mp3, .gz

● But our compression setting is per FS!



  

Why we ask the compressibility 
question



  

Bad Solutions

● Teach ZFS to recognize file extensions:
– There's just too damn many of them...
– Renaming a file changes our behavior?

● Security: wanna escalate costs for your storage provider 
as much as possible? Rename everything .gz and fill with 
zeros.

● Let admin control “compression” per file:
– GL trying to keep track of this with millions of files
– Often admin != user (shared storage environment)



  

ZFS Smart Compression

● We dynamically track per-file compression 
performance

● No change to on-disk format (in-core state only)
● Based on previous compression results we 

progressively back off retrying compression, or, if 
compression succeeds often, are more reluctant 
to skip it

● Works even on composite data files (VMDKs)



  

Smart Compression by the numbers
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Smart Compression by the numbers
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Thanks!

Questions? Discussion? Rotten tomatoes?
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