

ZFS (Smart?) Compression

Musings about pointless work
and how to do less of it

Sašo Kiselkov
saso.kiselkov@nexenta.com

Types of Compression Algos

● Archiving algorithms:
– Good at compression ratio, but highly CPU

intensive (read: slow)
– gzip, bzip2, LZMA

● Real-time algorithms:
– Trade compression ratio for speed
– lzjb, lz4, lzf

Why we bother with real-time algos

Sort-of middle ground solutions

So why archivers?

● Sometimes space savings are worth it:
– Write once, read many workloads (initial CPU cost

diluted over many reuses of the savings achieved)
– High bandwidth costs
– Certain workloads compress really well (up to or over

90%):
● text files
● HTML documents

– Certain workloads, however, don't compress at all:
● Pre-compressed stuff (multimedia, file archives, etc.)

What drives compression settings

● Am I prepared to pay the CPU cost?
● Is my workload compressible?

– This shouldn't really be a question, but it is
● We're a filesystem and individual files typically

are either compressible or incompressible:
– Compressible: .txt, .html, .doc, .wav
– Incompressible: .mpg, .mp3, .gz

● But our compression setting is per FS!

Why we ask the compressibility
question

Bad Solutions

● Teach ZFS to recognize file extensions:
– There's just too damn many of them...
– Renaming a file changes our behavior?

● Security: wanna escalate costs for your storage provider
as much as possible? Rename everything .gz and fill with
zeros.

● Let admin control “compression” per file:
– GL trying to keep track of this with millions of files
– Often admin != user (shared storage environment)

ZFS Smart Compression

● We dynamically track per-file compression
performance

● No change to on-disk format (in-core state only)
● Based on previous compression results we

progressively back off retrying compression, or, if
compression succeeds often, are more reluctant
to skip it

● Works even on composite data files (VMDKs)

Smart Compression by the numbers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
200

220

240

260

280

300

320

340

off [62MB/s incomp]

Mean (off [62MB/s incomp])

off [0MB/s incomp]

Mean (off [0MB/s incomp])

on [62MB/s incomp]

Mean (on [62MB/s incomp])

on [0MB/s incomp]

Mean (on [0MB/s incomp])

gzip-6

Smart Compression by the numbers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
450

500

550

600

650

700

off [125MB/s incomp]

Mean (off [125MB/s incomp])

off [0MB/s incomp]

Mean (off [0MB/s incomp])

on [125MB/s incomp]

Mean (on [125MB/s incomp])

on [0MB/s incomp]

Mean (on [0MB/s incomp])

gzip-1

Thanks!

Questions? Discussion? Rotten tomatoes?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

