Low Latency Hardware Accelerators for File Systems

Zacodi Labs OpenZFS Summit 2014

Motivation

- Compute intensive tasks
 - Cryptographic hash SHA256
 - Data compression
 - Encryption
- Used in many applications: storage, networking, etc.
- Existing hardware acceleration solutions
 - High overheads and latency
 - A lot of parallelism/concurrency required to achieve throughput
 - Not usable for latency sensitive applications

Compute Intensive Tasks

ZFS example: SHA256

- Cryptographically strong hash function
- Provides checksum for data integrity
- Aids redundancy detection and deduplication
- Uses almost all CPU time:
 - 6-core Sandy Bridge
 - 0.6-0.7 GB/s

Hardware Acceleration Approach

Offload compute intensive tasks to FPGA

Hardware/Software Interface

Low overhead/Low latency

- minimum number of PCle round trips
- overlap DMA and SHA256 computation
- Zero copy
 - no additional buffers/copies
 - no buffer management, allocation, de-allocation, etc.
- No DMA descriptors in memory
 - no descriptor management, synchronization, etc.
- Interface optimized for multi-core CPU architecture

Integration with ZFS

- Open source ZFS (Linux, Illumos)
- PCIe driver for FPGA both Illumos and Linux are supported
- Driver modifies SHA256 function pointer in ZFS
- SHA256 function is a callback into driver
- No ZFS source code changes required

ZFS performance comparison

CPU only

CPU + Arria V FPGA

Latency comparison

- SHA256 computation latency of 4KB and 64KB blocks of data
- Comparing CPU and accelerator

4KB	64KB
40 F 11000	650 4000
40.5 usec	650 usec
38.5 usec	500 usec
21.5 usec	250 usec
	40.5 usec

Latency vs. Throughput

Further extensions

- Compression
- Sliding window hashes
 - Rabin fingerprints, used for advanced deduplication
- Encryption
- Combinations of the above
 - e.g. parallel checksumming and compression

Conclusions

- High throughput hardware accelerator
- Low overhead, low latency
- Simple integration with ZFS
 - no changes in file system necessary
- Demonstrated 3x throughput improvement
- Interested? Write us at info@zacodi.com