
New Scrub Prefetcher
Tom Caputi
tcaputi@datto.com



Scrub and Resilver Background

2

• Scrubs and resilver use exactly the same code
• Scrubs happen completely in syncing context

• After spending some time scrubbing we suspend
• Resume next txg, reconciling any state that changed

• Scrub iteration
• Iterate through all object sets in the pool (discovering as we go)
• Traverse through all blocks of each object set in logical order

• Read all copies / parity of each block
• Self healing code automatically handles fixing / reporting



Current Design

3

= unread

= prefetched

= scanned



Current Design

4

= unread

= prefetched

= scanned



Current Design

5

= unread

= prefetched

= scanned



Current Design

6

= unread

= prefetched

= scanned



Current Design

7

= unread

= prefetched

= scanned



Current Design

8

= unread

= prefetched

= scanned



Current Design

9

= unread

= prefetched

= scanned



Current Design

10

= unread

= prefetched

= scanned



Current Design

11

= unread

= prefetched

= scanned



Current Design

12

= unread

= prefetched

= scanned



Current Design

13

= unread

= prefetched

= scanned



Current Design

14

= unread

= prefetched

= scanned



Current Design

15

= unread

= prefetched

= scanned



Current Design

16

= unread

= prefetched

= scanned



Current Design: Problems

17

• Prefetches are held up by synchronous arc_read()
• Issuing code is completely single-threaded
• Prefetches are not issued while leaf blocks are being issued

• First prefetch below a given block is effectively useless
• arc_read() called immediately after its prefetch (depth first traversal)

• Bursty IO requests
• Scrubbing leaf -> no prefetches (most blocks in a dataset are leaves)
• Scrubbing metadnode -> tons of prefetches



New Design (Ideal)

18

= unread

= prefetched

= scanned



New Design (Ideal)

19

= unread

= prefetched

= scanned



New Design (Ideal)

20

= unread

= prefetched

= scanned



New Design: Additional Considerations

21

• Ideal prefetcher makes 2 bad assumptions
• ARC memory available >= size of all blocks in the dataset
• All IO can be issued in parallel (infinite disk bandwidth)

• Solution
• Prefetch function just places IO into a priority queue
• Prioritize blocks we will actually need first based on ZIO bookmark
• Spin up a thread to issue prefetches from the queue and rate-limit IO



New Design

22

= unread

= prefetched

= queued

Max IOs at once = 2



New Design

23

1

= unread

= prefetched

= queued

Max IOs at once = 2



New Design

24

1 2 3

= unread

= prefetched

= queued



New Design

25

7

1 2 3 4 5 6

= unread

= prefetched

= queued

Max IOs at once = 2



New Design

26

5

1 2 3 4

= unread

= prefetched

= queued

Max IOs at once = 2



New Design

27

3

1 2

= unread

= prefetched

= queued

Max IOs at once = 2



New Design

28

1

= unread

= prefetched

= queued

Max IOs at once = 2



New Design

29

1 2 3

= unread

= prefetched

= queued

Max IOs at once = 2



New Design

30

1

= unread

= prefetched

= queued

Max IOs at once = 2



New Design

31

= unread

= prefetched

= queued

Max IOs at once = 2



New Design: Code Changes and Applications

32

• ARC code adjusted so that prefetch IOs can have a read callback
• arc_read_done() adjusted to provide bookmark and bp for context

• Allows IO read callbacks to issue next prefetch easily and inexpensively

• ZFS Currently has 3 prefetching implementations (not counting zfetch)
• dbuf.c (arc_read_done() changes help here)
• dmu_traverse.c
• dsl_scan.c



Questions?
Tom Caputi
tcaputi@datto.com
https://github.com/zfsonlinux/zfs/pull/6256


