
LLNL-PRES-740378
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

MMP: Safer Pool Import With High
Availability Clusters

OpenZFS Developer Summit

October 2017

Olaf Faaland

LLNL-PRES-740378
2

MMP: Problem Statement

• MMP prevents ZFS from importing a pool that is active on another
host, under most circumstances

• Merged to ZFSonLinux, available from v. 0.7.0
• https://github.com/zfsonlinux/zfs/pull/6073

Catastrophic corruption will occur if a ZFS pool is
simultaneously imported on more than one host

LLNL-PRES-740378
3

MMP: Motivation

Host A Host BJBOD

Our Use Case:
• Host B is a hot spare for Host A
• High Availability (HA) package starts services on B when A goes down
• … but what if A is not really down?

Existing Mechanisms are not sufficient
• Namespace check – scope is single host, Host B
• Hostid – Host B must always use “force” import, disabling this check
• HA package

• May be misconfigured (we’ve done this)
• May be fooled, e.g. by bad power control SW or HW (done this too)

LLNL-PRES-740378
4

MMP: Design Goals

Host A Host BJBOD

Don’t Make Trouble
• Don’t change existing behavior – e.g. rollback still works
• Don’t degrade performance for non-failover users
• Preserve on-disk compatibility

Reliable
• Simple configuration – no unsafe configurations
• Communicate via devices already shared
• Detect import even if some devices are not visible to Host B
• Enable automated single-node testing to catch regressions

Available Sooner Not Later
Low Performance Impact for failover users

LLNL-PRES-740378
5

K-slot Uberblock Ring

MMP: Where do we look for activity?

Label
0

Label
1 Boot Block Pool Blocks Label

2
Label

3

0 256k 512k 4M N - 512k N - 256k N

Blank Name=Value Pair
List

0 8k 16k 128k 256k

Boot
Header …

MMP
block

VDEV

LLNL-PRES-740378
6

MMP: Options for signaling

DMU Blocks
• Importing pool (even R/O) for reading signal is unsafe (and unreliable)

Config nvlist
• Repeatedly overwriting likely results in inconsistent reads

Uberblock ring
• Code exists for reading and writing Uberblocks
• Import is not required for such reads
• Uberblocks written by txg sync are a free activity indicator
• Quiet pools need another mechanism for reflecting change

• Forcing a new txg we may lose rollback
• Writing over existing slots we may lose rollback
• Partition Uberblock ring

• Dedicate 1 slot to MMP Uberblock writes only
• Dedicate remaining slots to txg sync Uberblock writes

LLNL-PRES-740378
7

MMP: Use Uberblocks for signaling

uint64_t ub_magic

uint64_t ub_version

uint64_t ub_txg

uint64_t ub_guid_sum

uint64_t ub_timestamp

blkptr_t ub_rootbp

uint64_t ub_software_version

uint64_t ub_mmp_magic

uint64_t ub_mmp_delay

struct uberblock

ub_timestamp: wallclock time the
uberblock was written, 1-second resolution

ub_mmp_magic: used to determine
whether these fields are valid

ub_mmp_delay: at time this Uberblock was
written, decaying average of time between
successful MMP writes

ub_mmp_seq: currently unused, but
intended to provide sub-second change
detection

uint64_t ub_mmp_seq

LLNL-PRES-740378
8

MMP: Existing Import Process (abridged)

Userspace Kernel
Find devices, assemble partial config
Tryimport ioctl w/config Load Uberblock

(latest txg & timestamp)
Load MOS config via root block ptr
Generate updated full config
Fetch & verify other pool info
Return full config nvlist & import info

Import ioctl w/config and flags Do it all again
Attempt import
(Possibly roll back and retry)
Return import info

Report result to user
Notes: (1) Illumos has other code path(s) (2) Tryimport also used for ‘zpool status’

LLNL-PRES-740378
9

MMP: Complications

• Method
• MMP thread writes Uberblocks on scheduled basis
• Extend tryimport to return txg and timestamp
• Userspace polls tryimport, watching for txg/timestamp change

• Problem
• Host panics sometimes during tryimport, if the userspace-built config is

stale when kernel loads MOS or compares MOS config with userspace
config (could be many seconds old!)

• Such user/kernel config coherency panics are not new; we chose to
avoid them rather than trying to find and fix all such issues

• Solution
• Perform poll in tryimport (kernel), and exit immediately if change is

detected

LLNL-PRES-740378
10

MMP: Complications

• Method
• MMP thread writes Uberblocks on scheduled basis
• ✔ Tryimport polls for change (in kernel)

• Problem
• What if there is a long delay between tryimport and import? Activity

check result is no longer valid
• Solution

• Perform poll in both tryimport (kernel) and import (kernel)

LLNL-PRES-740378
11

MMP: Complications

• Method
• MMP thread writes Uberblocks on scheduled basis
• ✔ Tryimport and import both poll for change (in kernel)

• Problem
• User must wait 2x polling period for import to succeed

• Solution
• If no activity detected, tryimport returns found txg and timestamp with

config.
• Userspace passes these values in when import ioctl issued; if they match

what is found by import when the uberblock is loaded, still valid

LLNL-PRES-740378
12

MMP: Complications

• Method
• MMP thread writes Uberblocks on scheduled basis
• Tryimport polls for change
• ✔ Tryimport records txg and timestamp
• ✔ Import polls if txg and timestamp do not match

• Problem
• What if user settings for MMP write period differ on Host A and B?
• What if there are large I/O delays due to some problem?

• Solution
• Host A records the average time between MMP writes at the end of the

Uberblock.
• Host B reads that to compute required polling period

LLNL-PRES-740378
13

MMP: Complications

• Method
• MMP thread writes Uberblocks on scheduled basis
• Tryimport polls for change
• Tryimport records txg and timestamp
• Import polls if txg and timestamp do not match
• ✔ Polling period based on MMP write period recorded in Uberblock

• Problem
• What if two hosts attempt to import pool at the same time?

• Solution
• Add a small random term when calculating the polling period. One will

finish sooner and the others will see its MMP writes
• (caveat) If the pool was cleanly exported this is defeated – needs thought

LLNL-PRES-740378
14

MMP: Complications

• Method
• MMP thread writes Uberblocks on scheduled basis
• Tryimport polls for change
• Tryimport records txg and timestamp
• Import polls if txg and timestamp do not match
• Polling period based on MMP write period recorded in Uberblock
• ✔ Polling period includes random term for simultaneous imports

• Problem
• How do we avoid all this for non-failover configurations?

• Solution
• We cannot detect whether the storage is shared, so the user must tell us.
• Introduce a property, multihost=“on” means we perform activity test

• We can also check that hostid is set when property set

LLNL-PRES-740378
15

MMP: Complications

• Method
• MMP thread writes Uberblocks on scheduled basis
• Tryimport polls for change
• Tryimport records txg and timestamp
• Import polls if txg and timestamp do not match
• Polling period based on MMP write period recorded in Uberblock
• Polling period includes random term for simultaneous imports
• ✔ Multihost property allows user to turn MMP on

• Problem
• Host B cannot tell whether the property is on before import

• Solution
• When the property is off, we zero the MMP fields in Uberblock
• Host B polls for change if MMP fields are nonzero

LLNL-PRES-740378
16

MMP: Merged Implementation

• Method
• MMP thread writes Uberblocks on scheduled basis
• Tryimport polls for change
• Tryimport records txg and timestamp
• Both tryimport and import skip poll if MMP fields in Uberblock zeroed
• Import polls if txg and timestamp do not match ones from tryimport
• Polling period is based on MMP write period recorded in Uberblock
• Polling period includes random term for simultaneous imports
• Multihost property allows user to turn MMP on
• ✔ Zero MMP fields in Uberblock when multihost=off

• And…
• MMP blocks are written to randomly selected leaves and labels at

frequency (1000 * zfs_multihost_interval / # vdevs) Hz
• Pool is suspended if (time since last successful MMP write) > (1000 *

zfs_multihost_interval * zfs_multihost_fail_intervals)
(zfs_multihost_interval is in milliseconds)

LLNL-PRES-740378
17

MMP: Testing

• Challenges
• Namespace checks prevent two imports on same node
• Hostid kernel sees will be the same for both import attempts
• Multi-node testing much more difficult, even with VMs

• Solution: ztest is the “remote host”
• Separate namespace since it runs entirely in userspace
• Altered to allow hostid to be set via environment variable
• Added option to skip some tests that halt activity to the pool

LLNL-PRES-740378
18

MMP: Limitations / Future Work

• MMP is defeated by long delays in I/O
• Algorithm assumes import is safe after some period but there is no

guarantee this is true
• For example admin disconnnects a SAS cable, replaces after 30 sec
• HW/SW problems can create similar delays

• No ongoing (post-import) check
• No protection when a pool is suspended

• Host A imports pool
• Host A encounters errors and the pool is suspended
• Host B imports the pool while there is no activity
• Host A admin issues ‘zpool clear’ and resumes I/O

• MMP offers no protection to ‘zpool create/add/attach/replace’
• For example, if a new device (no label) is added to two pools at the same

time
• The window of vulnerability is small as label writes happen early in the

process
• Zpool labelclear does not check for activity

LLNL-PRES-740378
19

MMP: Questions?

LLNL-PRES-740378
20

Credits

Multi-Modifier protection for ZFS was developed by Lawrence
Livermore National Laboratory.

The work was funded by Intel Inc. via a CRADA.

The design built on an earlier project, with a design authored by
Ricardo Correia in 2009.

Thanks to the following individuals who provided code, tests, reviews,
design feedback, ideas, and even a couple slides:
Brian Behlendorf, Ned Bass, Giuseppe Di Natale, Matthew Ahrens,
Andreas Dilger, and Don Brady.

Apologies to anyone I overlooked!

