
Private and confidential© 2014 Delphix. All Rights Reserved Private and confidential© 2014 Delphix. All Rights Reserved

Simplifying the Userland-Kernel API:
Channel Programs

Chris Siden

Background: ZFS Administrative Operations

zfs snapshot rpool/fs@snap

KernelUserland starts
snapshot ioctl

Operations assigned a txg,
Wait for that txg to Sync

Sync

Actual work
happens during
syncing context

ioctl returns with
results of operation

Background: Dependent Operations

zfs snapshot rpool/fs@snap &&
zfs set zfs:p=test rpool/fs@snap

snapshot ioctl set prop ioctl

● Syncpasses take longer when pool processing lots of writes
● Each one can take seconds
● Userland sees massive delay for each operation

Background: Syncpass Time

2s 2s 2s 2s

Operations assigned a txg,
Wait 5s to sync

Sync

Actual work
happens here,
takes no time

Userland starts
snapshot ioctl

ioctl returns with
results of operation

Background: Syncpass Time

zfs snapshot rpool/fs@snap &&
zfs set zfs:p=test rpool/fs@snap

2s 2s 2s 2s

snapshot ioctl set prop ioctl

2s 2s 2s 2s

For 2 dependent operations: 10 seconds

Background: Atomicity

zfs snapshot rpool/fs@snap &&
zfs set zfs:p=test rpool/fs@snap

2s 2s 2s 2s

snapshot ioctl set prop ioctl

2s 2s 2s 2s

Snapshot exist without property set

Background: Atomicity

zfs promote rpool/clone &&
zfs destroy rpool/fs

2s 2s 2s 2s

promote ioctl destroy ioctl

2s 2s 2s 2s

What if someone creates a new clone?

How an ioctl Evolves: Snapshots

1. Start simple:
● snapshot(“rpool/fs@snap”)

2. Need atomicity/speed for multiple snapshots:
● snapshot(“rpool/fs@snap”, “rpool/fs2@snap”, …)
● All or nothing: if any snapshot fails none are created

3. ‘zfs snapshot -r’ doesn’t work with “all or nothing”:
● If any snapshot fails with something other than ENOENT

none are created
4. Want to set properties while creating snapshots:

● snapshot(“rpool/fs@snap”, “rpool/fs2@snap”, …, props=
{map})

Why not just have an ioctl for ‘zfs snapshot -r’?

How an ioctl Evolves: Destroy

1. Start simple:
● destroy(“rpool/fs”)
● destroy(“rpool/fs@snap”)

2. Need speed for multiple snapshots (but not filesystems):
● destroy(“rpool/fs”)
● destroy(“rpool/fs@snap”, rpool/fs@snap2”, …)

Would like:

● Mix snapshot/filesystem destroys (zfs destroy -R takes forever)
● ‘zfs destroy -r @snap’ with in-kernel iteration

Simplify the ioctl APIs: Channel Programs

● Core operations are not changing frequently:
● snapshot(“rpool/fs@onesnap”)
● create(“rpool/onefs”)
● destroy(“rpool/onefs”, defer=true/false)

● Stop creating a new ioctl for every possible combination of
core operations

● Have syncing context interpret “channel programs” that
describe what combination of operations to perform, how to
do iteration, and how to deal with errors

Channel Programs: An Example

● zfs promote <?> && zfs destroy <fsname>

● lastsnap = zfs.list.snapshots(input.
fsname)
clone = zfs.list.clones(lastsnap)
err = zfs.sync.promote(clone)
if err ~= 0 then
 return err
end
return zfs.sync.destroy(input.fsname)

● Picks one clone of the latest snapshot and promotes it
before doing the destroy

Channel Programs: An Example

zfs promote rpool/clone &&
zfs destroy rpool/fs

2s 2s 2s 2s

promote ioctl destroy ioctl

2s 2s 2s 2s

What if someone creates a new clone?

Channel Programs: An Example

zfs channel myscript.zfs

2s 2s 2s 2s

channel program ioctl

Both promote and
destroy happen in
same syncpass

2s 2s 2s 2s

Channel Programs: Another Example

● zfs snapshot -r <snapname>

● rootfs = split(input.snapname, “@”)[0]
snap = split(input.snapname, “@”)[1]
result = {}
for fs in zfs.list.snapshots(rootfs) do
 s = fs .. “@” .. snap
 result[s] = zfs.sync.snapshot(s)
done
return result

● Does recursive snapshot with iteration in the kernel, not
userland like it is today

Channel Programs: Another Example

● zfs clone <fsname> <clonename>

● snap = input.fsname .. “@tmp”
err = zfs.sync.snapshot(snap)
if err ~= 0 then return err done
err = zfs.sync.clone(snap, input.
clonename)
zfs.sync.destroy(snap, defer=true)
return err

● Clones the current state of a filesystem, creating a new
snapshot that is deferred-destroyed in the same
transaction

Channel Programs: Version 1.0

● All the listing and synctasks from the examples

● Must be privileged user to run arbitrary programs:
● No per-synctask permissions checking (yet)
● Not great memory limiting
● No protections against infinite loops

● Works best for programmatic consumers

● “Built-in” channel programs (compiled into the kernel)
used to implement as many existing ioctls as possible

● Not apply to every ZFS operation fits into this model, e.g.
adding devices

Private and confidential© 2014 Delphix. All Rights Reserved© 2014 Delphix. All Rights Reserved

THANK YOU
ANY QUESTIONS?

Private and confidential

