DE[PI—!I)—(

Simplifying the Userland-Kernel API:
Channel Programs

Chris Siden

© 2014 Delphix. All Rights Reserved Private and confidential

D=/ /—PHIX

Background: ZFS Administrative Operations

zfs snapshot rpool/fs@snap

I i —>|
Userland starts ioctl returns with
snapshot ioctl Ke rne l results of operation

_ _ Actual work
Operations assigned a txg, happens during
> —p

D=/ /—PHIX

Background: Dependent Operations

zfs snapshot rpool/fs@snap &&
zfs set zfs:p=test rpool/fs@snap

snapshot ioctl set prop ioctl
¢ A ,

D=/ /—PHIX

Background: Syncpass Time

® Syncpasses take longer when pool processing lots of writes

e Each one can take seconds
e Userland sees massive delay for each operation

A

Userland starts ioctl returns with
snapshot ioctl results of operation

: , Actual work
Operations assigned a txg, happens here,
Wait 5s to sync takes no time

> —p

TSI S ERETEND I BRETRR I BRETRR)

D=/ /—PHIX

Background: Syncpass Time

zfs snapshot rpool/fs@snap &&
zfs set zfs:p=test rpool/fs@snap

snapshot ioctl set prop ioctl
¢ A ,
zs>[yz>[> 2s >|: 2s 2s 2s 2s 2s
J | | |

For 2 dependent operations: 10 seconds

D=/ /—PHIX

Background: Atomicity

zfs snapshot rpool/fs@snap &&
zfs set zfs:p=test rpool/fs@snap

Ba >

!

snapshot ioctl set prop ioctl

Snapshot exist without property set >
i > Y .

zs>[yz>[> 2s 2s 2s 2s 2s 2s
: : _ | | |

D=/ /—PHIX

Background: Atomicity

zfs promote rpool/clone &é&
zfs destroy rpool/fs

Ba >

!

promote ioctl destroy ioctl

What if someone creates a new clone? >
i > \ N

zs>[yz>[> 2s 2s 2s 2s 2s 2s
: : _ | | |

D=/ /—PHIX

How an ioctl Evolves: Snapshots

1. Start simple:
® snapshot(“rpool/fs@snap”)
2. Need atomicity/speed for multiple snapshots:
® snapshot(“rpool/fs@snap”, “rpool/fs2@snap”, ...)
e All or nothing: if any snapshot fails none are created
3. ‘zfs snapshot -r’ doesn’t work with “all or nothing”:
e If any snapshot fails with something other than ENOENT
none are created
4. Want to set properties while creating snapshots:

® snapshot(“rpool/fs@snap”, “rpool/fs2@snap”, ..., props=
{map})

Why not just have an ioctl for ‘zfs snapshot -r’?

D=/ /—PHIX

How an ioctl Evolves: Destroy

1. Start simple:
e destroy(“rpool/fs”)
e destroy(“rpool/fs@snap”)
2. Need speed for multiple snapshots (but not filesystems):
e destroy(“rpool/fs”)
e destroy(“rpool/fs@snap”, rpool/fs@snap2”, ...)

Would like:

e Mix snapshot/filesystem destroys (zfs destroy -R takes forever)
e ‘zfs destroy -r @snap’ with in-kernel iteration

D=/ /—PHIX

Simplify the ioctl APIs: Channel Programs

e Core operations are not changing frequently:
® snapshot(“rpool/fs@onesnap”)
e create(“rpool/onefs”)
e destroy(“rpool/onefs”, defer=true/false)

® Stop creating a new ioctl for every possible combination of
core operations

e Have syncing context interpret “channel programs” that
describe what combination of operations to perform, how to
do iteration, and how to deal with errors

D=/ /—PHIX

Channel Programs: An Example

e zfs promote <?> && zfs destroy <fsname>

¢ lastsnap = zfs.list.snapshots (input.
fsname)
clone = zfs.list.clones (lastsnap)
err = zfs.sync.promote (clone)
if err ~= 0 then
return err
end
return zfs.sync.destroy (input. fsname)

e Picks one clone of the latest snapshot and promotes it
before doing the destroy

D=/ /—PHIX

Channel Programs: An Example

zfs promote rpool/clone &é&
zfs destroy rpool/fs

Ba >

!

promote ioctl destroy ioctl

What if someone creates a new clone? >
i > \ N

zs>[yz>[> 2s 2s 2s 2s 2s 2s
: : _ |

D=/ /—PHIX

Channel Programs: An Example

zfs channel myscript.zfs

channel program ioctl

Both promote and
i destroy happen in
_»| same syncpass

zs>[yz>[> 2s 2s 2s 2s 2s 2s
: : _ |

D=/ /—PHIX

Channel Programs: Another Example

e zfs snapshot -r <snapname>

¢ rootfs = split(input.snapname, “@”) [0]
snap = split(input.snapname, “Q@”) [1]
result = {}
for fs in zfs.list.snapshots (rootfs) do

s = fs .. “@” .. snap
result[s] = zfs.sync.snapshot(s)
done

return result

e Does recursive snapshot with iteration in the kernel, not
userland like it is today

D=/ /—PHIX

Channel Programs: Another Example

@ zfs clone <fsname> <clonename>

¢ snap = input.fsname .. “Qtmp”
err = zfs.sync.snapshot (snap)
if err ~= 0 then return err done
err = zfs.sync.clone (snap, input.
clonename)
zfs.sync.destroy (snap, defer=true)
return err

e Clones the current state of a filesystem, creating a new
snapshot that is deferred-destroyed in the same
transaction

D=/ /—PHIX

Channel Programs: Version 1.0

e All the listing and synctasks from the examples

e Must be privileged user to run arbitrary programs:
e No per-synctask permissions checking (yet)
e Not great memory limiting
e No protections against infinite loops

e \Works best for programmatic consumers

e “Built-in” channel programs (compiled into the kernel)
used to implement as many existing ioctls as possible

e Not apply to every ZFS operation fits into this model, e.qg.
adding devices

DE[PI—II)—(

THANK YOU
ANY QUESTIONS?

© 2014 Delphix. All Rights Reserved Private and confidential

